L^p ESTIMATES FOR SCHRÖDINGER EVOLUTION EQUATIONS

BY M. BALABANE AND H. A. EMAMI-RAD

ABSTRACT. We prove that for Cauchy data in $L^1(\mathbf{R}^n)$, the solution of a Schrödinger evolution equation with constant coefficients of order 2m is uniformly bounded for $t \neq 0$, with bound $(1+|t|^{-c})$, where c is an integer, c > n/2m-1. Moreover it belongs to $L^q(\mathbf{R}^n)$ if q > q(m,n), with its L^q norm bounded by $(|t|^{c'} + |t|^{-c})$, where c' is an integer, c' > n/q. A maximal local decay result is proved. Interpolating between L^1 and L^2 , we derive (L^p, L^q) estimates.

On the other hand, we prove that for Cauchy data in $L^p(\mathbb{R}^n)$, such a Cauchy problem is well posed as a distribution in the t-variable with values in $L^p(\mathbb{R}^n)$, and we compute the order of the distribution. We apply these two results to the study of Schrödinger equations with potential in $L^p(\mathbb{R}^n)$. We give an estimate of the resolvent operator in that case, and prove an asymptotic boundedness for the solution when the Cauchy data belongs to a subspace of $L^p(\mathbb{R}^n)$.

1. Introduction. In this paper we study Schrödinger evolution equations

(*)
$$\partial U/\partial t = (iP(D) + V(x))U, \quad U(0,x) = U_0(x) \in L^p(\mathbf{R}^n),$$

where

$$D = \left(\frac{1}{i}\frac{\partial}{\partial x_1}, \dots, \frac{1}{i}\frac{\partial}{\partial x_n}\right)$$

and $P(\xi)$ is an elliptic polynomial of order 2m with $\operatorname{Im} P_{2m}(\xi) = 0$. It is well known that in the case where $\operatorname{Im} P_{2m}(\xi) > 0$ (Heat equation), the solution belongs to $L^p(\mathbf{R}^n)$ in the x-variables for $t \geq 0$. In the case where $\operatorname{Im} P_{2m}(\xi) < 0$ (backward Heat equation), there are no L^p estimates of the solution by the L^p norm of the Cauchy data. We are concerned with the limiting case of the Schrödinger equation where $\operatorname{Im} P_{2m}(\xi) = 0$.

Hörmander [7] proved that even in the simplest case (where P is the Laplacian of \mathbf{R}^n) the problem is not well posed in the usual sense in $L^p(\mathbf{R}^n)$ if $p \neq 2$: $e^{-it\xi^2}$ is not a multiplier of L^p ($p \neq 2$). This implies that the Hille-Yosida estimates of the resolvent of (iP(D) + V(x)) viewed as an operator in $L^p(\mathbf{R}^n)$ are not fulfilled. In Balabane and Emami-Rad [1] we proved that for the usual Schrödinger equation $(P(D) = \Delta, V = 0)$ the problem (*) is well posed in $L^p(\mathbf{R}^n)$, for any p, in the distribution sense in the t-variable. In [2] we proved that the result remains true with V = 0 and P(D) a homogeneous system with constant coefficients. For that

Received by the editors July 31, 1984 and, in revised form, November 30, 1984. 1980 Mathematics Subject Classification. Primary 35K22; Secondary 35P05, 42B15, 47B38.

Key words and phrases. L^p estimates, Schrödinger evolution equation, distribution semigroup, local decay, asymptotic boundedness, functional calculus in L^p .

aim, the abstract tool of Smooth Distribution Semigroups was introduced and a Hille-Yosida theorem proved for such semigroups.

In this paper we study the equation including a potential $V(x) \in L^r(\mathbf{R}^n)$ and we drop the homogeneity condition. We prove that in this case, the problem (*) is still well posed in the distribution sense in the t-variable with values in $L^p(\mathbf{R}^n)$, and we compute the order of the distribution. We derive precise estimates of the $\mathcal{L}(L^p)$ norm of the resolvent operator $(\lambda I - (iP(D) + V))^{-1}$. We prove uniform boundedness for the solution when Cauchy data belongs to a subspace of $L^p(\mathbf{R}^n)$.

Another related problem is the uniform boundedness of the solution of the Cauchy problem (*) when U_0 belongs to $L^1(\mathbf{R}^n)$ and for $t \neq 0$. We prove that in the constant coefficients case, if the restriction of $P(\xi)$ to the unit sphere fulfills a nondegeneracy condition, then the solution belongs to $L^{\infty}(\mathbf{R}^n)$ for $t \neq 0$. For n > 3 + 2/m - 1 it belongs to $L^q(\mathbf{R}^n)$ for q > q(m,n). It decays locally as $|t|^{-n/2}$. This is done using the foliation of \mathbf{R}^n by the wave surfaces $P(\xi) = cte$, and applying the stationary phase method to estimate the integrals involved. As a corollary we prove $(L^p, L^{p'})$ and (L^p, L^q) estimates for the Cauchy problem (*). (Estimates of this type have been given by Brenner [4] for the wave equation using hyperbolicity.)

In §2 (L^1, L^q) estimates are proved for V = 0. In §3 $(L^p, L^{p'})$ estimates are derived, and (L^p, L^q) estimates are established. The Cauchy problem (*) in L^p with V = 0 is studied in §4. Smooth distribution semigroups are introduced. In §5 the Cauchy problem (*) is solved and (L^p, L^p) estimates are given for the solution and for the resolvent operator.

REMARK. As usual the notation (L^p, L^q) means estimates of the L^q norm of the solution of (*) when the Cauchy data belongs to L^p . p' is the conjugate index of p.

2. Behaviour of the solutions for Cauchy data in $L^1(\mathbb{R}^n)$. We consider the Cauchy problem (with constant coefficients)

(**)
$$\partial U/\partial t = iP(D)U, \quad U(0,x) = U_0(x),$$

where $U_0(x) \in S(\mathbf{R}^n)$; the solution is given by

$$U(t,x) = \overline{\mathcal{F}}(e^{itP(\xi)}) * U_0$$

(where \mathcal{F} denotes the usual Fourier transform, $\overline{\mathcal{F}}$ its inverse, and $\overline{\mathcal{F}}(e^{itP(\xi)})$ is defined as an oscillatory integral).

The aim of this section is to estimate the L^q norm in the x-variable of U(t,x) by the L^1 norm of U_0 . So what we have to prove is that $\overline{\mathcal{F}}(e^{itP(\xi)})$ belongs to L^q for any fixed $t \neq 0$. This will be done using foliation of the exterior of a compact set of \mathbb{R}^n by the wave surfaces of P. The Stationary Phase Method (Duistermaat [5]) then gives the behaviour of the integrals defining $\overline{\mathcal{F}}(e^{itP(\xi)})$.

Suitable hypotheses for proving the estimates are:

(H1) $P(\xi)$ is a real valued elliptic polynomial, with principal part $p(\xi)$ of degree 2m.

(H2) For $u \in S^{n-1}$ (the unit sphere of \mathbf{R}^n), the restriction to S^{n-1} of $\psi(\xi) = \langle u, \xi \rangle p^{-1/2m}(\xi)$ is nondegenerate at its critical points (i.e. $d_{\omega\omega}^2(\langle u, \omega \rangle p^{-1/2m}(\omega))$ is a nondegenerate quadratic form on $T_{\omega}S^{n-1}$ if $\omega \in S^{n-1}$ and $d_{\omega}(\langle u, \omega \rangle p^{-1/2m}(\omega)) = 0$).

(H3) $m \ge 1$ and $n \ge 3$, or (H3') $m \ge 2$ and n > 3 + 2/(m-1).

Let c and c' be integers with c > n/2m - 1 and c' > n/q.

Let

$$\frac{1}{q(m,n)} = \frac{(m-1)(n-3)}{(2m-1)n} - \frac{2}{(2m-1)n}.$$

The estimates are

THEOREM 1. (a) If (H1), (H2) and (H3) are fulfilled, the solution $U(t,\cdot)$ of the Cauchy problem (**) with Cauchy data in $L^1(\mathbf{R}^n)$ belongs to $L^{\infty}(\mathbf{R}^n)$ for $t \neq 0$. The bound is

$$||U(t,\cdot)||_{L^{\infty}(\mathbf{R}^n)} \leq C_{\infty}(1+|t|^{-c})||U_0||_{L^1(\mathbf{R}^n)}.$$

(b) If (H1), (H2) and (H3') are fulfilled, then $U(t,\cdot)$ belongs to $L^q(\mathbf{R}^n)$ for $q(m,n) < q \le \infty$. The estimate is

$$||U(t,\cdot)||_{L^q(\mathbf{R}^n)} \le C_q(|t|^{c'} + |t|^{-c})||U_0||_{L^1(\mathbf{R}^n)}.$$

 C_q and C_{∞} are absolute constants.

REMARK 1. (i) If P is homogeneous, the estimates can be trivially improved to

$$||U(t,x)||_{L^q} \le C_q |t|^{-n/2mq'} ||U_0||_{L^1}$$
 for $q(m,n) < q \le \infty$.

- (ii) Without any change to the bounds and to the proof, these estimates can be proved with $W^{s,q}$ norm in place of L^q norm if $q > \tilde{q}(m,n,s)$ with $\tilde{q}^{-1}(m,n,s) = q^{-1}(m,n) s/(2m-1)n$.
- (iii) Without any change to the bounds and to the proof, (H1) could be replaced by $P(\xi) = \rho^{2m} p(\omega) + Q(\rho, \omega)$ with a symbol $Q \in S_{1,0}^{2m-1}(S^{n-1} \times \mathbf{R}_+)$.

The proof of Theorem 1 will follow the lemmas below. We will assume $m \geq 2$, the case m = 1 can be solved by direct computation.

- A. A foliation of $\mathbb{R}^n \setminus \{P(\xi) \leq a\}$. Let $(\rho, \omega) \in \mathbb{R}_+ \times S^{n-1}$ be the spherical coordinates in \mathbb{R}^n . In these variables, $P(\rho, \omega) = \rho^{2m} p(\omega) + Q(\rho, \omega)$ with degree of Q strictly less than 2m. Ellipticity of P implies $|p(\omega)| \geq c > 0$ for $\omega \in S^{n-1}$. Since p is real valued, we can assume that $p(\omega) \geq c > 0$ for $\omega \in S^{n-1}$.
- LEMMA 1. There exist two positive constants a and b, and a function $\rho(s,\omega) \in C^{\infty}(]a,\infty[\times S^{n-1})$ such that for $(s,\omega)\in]a,\infty[\times S^{n-1}]$ we have $P(\rho(s,\omega),\omega)=s$ and $\rho(s,\omega)>b$.

PROOF. Let

$$b' = \sup_{
ho \ge 1} \sup_{\omega} |(2m
ho^{2m-2}p(\omega))^{-1}\partial Q/\partial
ho|.$$

Let $b = \max(b', 1)$. For fixed $\omega \in S^{n-1}$, $P(\rho, \omega)$ is a strictly increasing function of the ρ variable for $\rho > b$, and goes to infinity when ρ does. It is then bijective from $]b, \infty[$ onto $]p(b, \omega), \infty[$. Let $\rho(s, \omega)$ be the inverse mapping, and let $a = \sup_{\omega \in S^{n-1}} P(b, \omega)$. $\rho(s, \omega)$ is then a mapping from $]a, \infty[\times S^{n-1}]$ to \mathbf{R}_+ , which verifies the identity quoted in the lemma. Moreover ρ is infinitely differentiable as the implicit function theorem asserts. Actually the mapping $(\rho, \omega) \to (s, \omega)$ is a C^{∞} -diffeomorphism from the open set $\mathbf{R}^n \setminus \{P(\xi) < a\}$ onto $]a, \infty[\times S^{n-1}]$. Q.E.D.

Using Hörmander's definition of the symbols classes (Duistermaat [5]), the function just defined has the following behaviour:

LEMMA 2.

$$\rho(s,\omega) = (s/p(\omega))^{1/2m} + \sigma(\omega,s), \quad \text{where } \sigma(\omega,s) \text{ belongs to } S^0_{1,0}(S^{n-1} \times]a, \infty[).$$

PROOF. If we let $\partial_s = \partial/\partial s$, $\partial_\omega = \partial/\partial \omega$ and $H(\omega, s) = (1 + p^{-1}\rho^{-2m}Q)^{1/2m}$ we have to prove that $\rho(1-H) \in S_{1,0}^0$ and this will be done if we show that $\rho \in S_{1,0}^{1/2m}$ and $1-H \in S_{1,0}^{-1/2m}$. First note that in the identity

$$(E) s = p \cdot \rho^{2m} + Q,$$

s goes to infinity whenever ρ does. Since the degree of Q is strictly less than 2m, we have, uniformly in ω ,

(S1)
$$\rho \sim p^{-1/2m} s^{1/2m} \quad \text{as } s \to \infty.$$

Then differentiating (E) with respect to s gives

(S2)
$$\partial \rho / \partial s = O(s^{-1+1/2m}).$$

By induction on α , we prove the formulas:

$$(\text{F1}) \qquad \quad \partial_s^{\alpha} \rho^{2m} = 2m\rho^{2m-1}\partial_s^{\alpha} \rho + \sum_{i \in N_s} C_i \rho^{i_0} (\partial_s \rho)^{i_1} \cdots (\partial_s^{\alpha-1} \rho)^{i_{\alpha-1}},$$

$$(F2) \qquad \partial_s^{\alpha} Q = \partial_{\rho} Q \cdot \partial_s^{\alpha} \rho + \sum_{j \in M_{\alpha}} D_j (\partial_{\rho}^k Q) (\partial_s \rho)^{j_1} \cdots (\partial_s^{\alpha - 1} \rho)^{j_{\alpha - 1}}$$

for any $\alpha \in \mathbf{N}^*$, where

$$\begin{split} N_{\alpha} &= \left\{ i = (i_0, \dots, i_{\alpha-1}) \in \mathbf{N}^{\alpha} \text{ with } \sum_{\gamma=0}^{\alpha-1} i_{\gamma} = 2m \text{ and } \sum_{\gamma=1}^{\alpha-1} \gamma i_{\gamma} = \alpha \right\}, \\ M_{\alpha} &= \left\{ j = (k, j_1, \dots, j_{\alpha-1}) \in \mathbf{N}^{\alpha} \text{ with } k = \sum_{\nu=1}^{\alpha-1} j_{\nu} \text{ and } \sum_{\nu=1}^{\alpha-1} \nu j_{\nu} = \alpha \right\}, \end{split}$$

and C_i and D_j are absolute constants.

Then, applying ∂^{α} to (E) gives inductively

$$\partial_s^{\alpha} \rho = O(s^{-\alpha + 1/2m}).$$

In order to estimate s-derivatives of (1 - H), we note that by definition

(T1)
$$1 - H = O(s^{-1/2m}).$$

By induction on α , we prove

$$(F3) \qquad \partial_s^{\alpha} H = \sum_{K \in L_{\alpha}} E_K(\omega) H^c \rho^{-2ma-b} \prod_{\gamma=1}^{\alpha} (\partial_s^{\gamma} \rho)^{k_{\gamma}} \prod_{\nu=0}^{\alpha} (\partial_{\rho}^{\nu} Q)^{l_{\nu}},$$

where $E_K(\omega) \in C^{\infty}(S^{n-1})$ and L_{α} is the finite set of elements $(a, b, k, l) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N}^{\alpha} \times \mathbb{N}^{\alpha-1}$ satisfying

$$\alpha \geq a \geq 0; \quad \alpha \geq b \geq 0; \quad \sum_1^\alpha \gamma k_\gamma = \alpha; \quad \sum_0^\alpha l_\nu = a; \quad \sum_1^\alpha k_\gamma - \sum_0^\alpha (\nu+1) l_\nu \leq b-1.$$

Then using the previous estimate $(S\alpha)$ on $\partial_s^{\alpha}\rho$ leads to

$$\partial_s^{\alpha} H = O(s^{-\alpha - 1/2m}).$$

In order to prove the same estimates for the derivatives $\partial_s^{\alpha} \partial_{\omega}^{\beta}$, we first prove formulas similar to (F1) and (F2) by induction on β :

$$(\mathrm{F}'1) \qquad \partial_s^\alpha \partial_\omega^\beta \rho^{2m} = 2m\rho^{2m-1} \partial_s^\alpha \partial_\omega^\beta \rho + \sum_{i \in N_2} C_i \prod_{\gamma=0}^\alpha \prod_{\gamma' < \beta} (\partial_s^\gamma \partial_\omega^{\gamma'} \rho)^{i_{\gamma,\gamma'}},$$

where $\alpha' < \beta$, $i_{\gamma} = \sum_{\gamma'} i_{\gamma,\gamma'}$ for $\gamma = 0, \dots, \alpha$ and

$$N_lpha = \left\{ i = (i_0, \ldots, i_lpha) ext{ with } \sum_\gamma i_\gamma = 2m ext{ and } \sum_\gamma \gamma i_\gamma = lpha
ight\};$$

$$(\mathrm{F}'2) \qquad \quad \partial_s^\alpha \partial_\omega^\beta Q = \partial_\rho Q \cdot \partial_s^\alpha \partial_\omega^\beta \rho + \sum_{j \in M_\alpha} D_i (\partial_\rho^k \partial_\omega^l Q) \prod_{\nu=0}^\alpha \prod_{\nu' < \beta} (\partial_s^\nu \partial_\omega^{\nu'} \rho)^{j_{\nu,\nu'}},$$

where $k \leq \alpha, \ l \leq \beta, \ \alpha' < \beta, \ j_{\nu} = \sum_{\nu'} j_{\nu,\nu'} \ \text{for} \ \nu = 0, \dots, \alpha \ \text{and}$

$$M_{\alpha} = \left\{ j = (j_0, \dots, j_{\alpha}) \text{ with } \sum_{\nu=1}^{\alpha} j_{\nu} = k - j_0 \text{ and } \sum_{\nu=1}^{\alpha} \nu j_{\nu} = \alpha \right\}.$$

Applying $\partial_s^{\alpha} \partial_{\omega}^{\beta}$ to equation (E) shows that $\rho \in S_{1,0}^{1/2m}$:

$$(S'\alpha) \partial_s^{\alpha} \partial_{\omega}^{\beta} \rho = O(s^{-\alpha + 1/2m}).$$

At last, we show inductively on β

$$(\mathbf{F'3}) \qquad \partial_s^{\alpha} \partial_{\omega}^{\beta} H = \sum E_K(\omega) H^c \prod_{\gamma \leq \alpha} \prod_{\gamma' \leq \beta} (\partial_s^{\gamma} \partial_{\omega}^{\gamma'} \rho)^{k_{\gamma,\gamma'}} \prod_{\nu \leq \alpha} \prod_{\nu' \leq \beta} (\partial_{\rho}^{\nu} \partial_{\omega}^{\nu'} Q)^{l_{\nu,\nu'}},$$

where, if we denote by $k_{\gamma} = \sum_{\gamma'} k_{\gamma,\gamma'}$ and $l_{\nu} = \sum_{\nu'} l_{\nu,\nu'}$, then $\sum \gamma k_{\gamma} = \alpha$ and $\sum k_{\gamma} + \sum (2m - \nu - 1)l_{\nu} \le -1$. This shows, using $(S\alpha)$, that

$$(\mathrm{T}' \alpha)$$
 $\partial_s^{\alpha} \partial_{\omega}^{\beta} H = O(s^{-\alpha - 1/2m})$

which means, added to (T1), that $1 - H \in S_{1.0}^{-1/2m}$.

(It is straightforward to check that all the estimates given are uniform in the ω -variables.) Q.E.D.

We are going to use this foliation of $\mathbf{R}^n \setminus \{P(\xi) \leq a\}$ to estimate integrals involved in $\overline{\mathcal{F}}(e^{itP(\xi)})$.

B. Estimating integrals on S^{n-1} . Let $\beta(s) \in C^{\infty}(\mathbf{R})$, $\beta \equiv 1$ for s > a' + 1 $\beta \equiv 0$ for s < a', where a' > a (the constant a is defined in Lemma 1). Let

$$x = ru, \quad r > 0, \ u \in S^{n-1}, \qquad \lambda = rs^{1/2m},$$

$$\phi(s, \omega) = s^{-1/2m} \rho(s, \omega) \langle u, \omega \rangle, \quad a_{\beta}(s, \omega) = \beta(s) \rho^{n-1} \frac{\partial \rho}{\partial s},$$

$$J_{\beta}(s, \lambda) = \int_{S^{n-1}} e^{i\lambda \phi(s, \omega)} a_{\beta}(s, \omega) d\omega.$$

The following lemma analyses the phase function ϕ :

LEMMA 3. There exists a finite number of open sets $\Omega_i \subset S^{n-1}$ (i = 1, ..., N) and a constant d > a such that, for s > d:

- (1) On the complementary set of $\bigcup_i \Omega_i$ in S^{n-1} , $\phi(s,\omega)$ has no critical points in the ω -variables and $||d_{\omega}\phi|| \geq C > 0$.
- (2) On each Ω_i , $\phi(s,\omega)$ has only one critical point $\omega^i(s)$, $\omega^i(s) \in \Omega_i' \in \Omega_i$. At that point, $\phi(s,\omega)$ is nondegenerate: the eigenvalues of the Hessian matrix of ϕ in the ω -variables at $(s,\omega^i(s))$ have their modulus bounded from below, i.e. let $\tilde{H}(s) = \operatorname{Hess}_{\omega}(\phi)(s,\omega^i(s)) = d_{\omega\omega}^2\phi(s,\omega^i(s))$, then $\|\tilde{H}^{-1}(s)\| \leq C'$.
- (3) The estimates are uniform in s, i.e. Ω_i, Ω'_i, C and C' do not depend on s > d. $\omega^i \in C^{\infty}(]d, \infty[; S^{n-1}).$

PROOF.

$$\phi(s,\omega) = p^{-1/2m}(\omega)\langle u,\omega\rangle + s^{-1/2m}\sigma(s,\omega)\langle u,\omega\rangle$$
$$= p^{-1/2m}(\omega)\langle u,\omega\rangle + O(s^{-1/2m})$$

uniformly on S^{n-1} , and this remains true under ω -differentiation, as shown in Lemma 2.

Hypothesis (H2) asserts that $\phi(\infty,\omega)$ has only nondegenerate critical points. Compactness of S^{n-1} and the fact that such points are isolated imply that this set of points is finite: $(\omega^i(\infty);\ i=1,\ldots,N)$. The assumption (H2) asserts the nondegeneracy of $\phi(\infty,\omega)$ at these points: $d^2_{\omega\omega}\phi(\infty,\omega^i(\infty))$ invertible. This implies, by the implicit function theorem, the existence of d'>0, O_i a neighborhood of $\omega^i(\infty)$ in S^{n-1} and $\omega^i(s) \in C^{\infty}(]d',\infty[;O_i)$ with

$$(d_{\omega}\phi(s,\omega)=0 \Leftrightarrow \omega=\omega^{i}(s))$$
 for $s>d'$ and $\omega\in O_{i}$.

Moreover, invertibility of $d^2_{\omega\omega}\phi(\infty,\omega^i(\infty))$ implies the existence of open sets $\Omega_i \subset O_i$, where $d^2_{\omega\omega}\phi(\infty,\omega)$ is invertible and we have

$$\omega \in \Omega_i \Rightarrow \|(d^2_{\omega\omega}\phi(\infty,\omega))^{-1}\| < C'.$$

Lemma 2 asserts that

$$d^2_{\omega\omega}\phi(s,\omega) = d^2_{\omega\omega}\phi(\infty,\omega) + O(s^{-1/2m})$$

uniformly for $\omega \in S^{n-1}$. This implies the existence of d'' > 0 such that

$$(s > d'' \text{ and } \omega \in \Omega_i) \Rightarrow \|(d^2_{\omega\omega}\phi(s,\omega))^{-1}\| < 2C'.$$

This is uniform nondegeneracy of the phase function ϕ on $(\bigcup_i \Omega_i) \times]d'', \infty[$. Putting $\omega = \omega^i(s)$ gives

$$\|\tilde{H}^{-1}(s)\| < 2C' \text{ for } s > d''.$$

Let $\Omega_i' \in \Omega_i$ with $\omega^i(\infty) \in \Omega_i'$. On the complementary set of $\bigcup_i \Omega_i'$ in S^{n-1} , $d_{\omega}\phi(\infty,\omega) \neq 0$. Therefore there exists d''' > 0 such that

$$\left(s>d''' \text{ and } \omega\in\bigcap_i\mathsf{C}\Omega_i'
ight)\Rightarrow \|d_\omega\phi(s,\omega)\|>C.$$

We take $d = \max(d', d'', d''', a)$, where a is the constant defined in Lemma 1. Q.E.D. We can therefore apply the Stationary Phase Theorem with parameters (Duistermatt [5]).

LEMMA 4. For s > d, there exist absolute constants D_l and D'_l such that (a) for r > 0

$$\left| \frac{\partial^l}{\partial s^l} (e^{i\lambda\phi} a_\beta) \right| < D_l r^l s^{-1 + (n/2m) - (l(2m-1)/2m)},$$

(b) *for* r > 1

$$\left|\frac{\partial^l}{\partial s^l} \int_{S^{n-1}} e^{i\lambda\phi} a_\beta \, d\omega \right| < D_l' \frac{s^{-1+((n+1)/4m)-(l(2m-1)/2m)}}{r^{-l+(n-1)/2}}.$$

PROOF. The first estimate is straightforward using the Leibniz rule to differentiate $(e^{i\lambda\phi}a_{\beta})$, then Lemma 2 gives $\phi\in S^0_{1,0}$, $a_{\beta}\in S^{-1+n/2m}_{1,0}$ and $\lambda=rs^{1/2m}$ which implies inequality a.

To prove the second estimate, let $\alpha_i(\omega)$ $(i=0,\ldots,N)$ be a C^{∞} -partition of unity on S^{n-1} fitting the following covering: $(\Omega_0 = \bigcap_i \overline{\Omega_i}, \Omega_1, \ldots, \Omega_N)$. The integral on S^{n-1} is then a sum of N+1 parts.

The integral over Ω_0 is rapidly decreasing when $\lambda \to \infty$, the phase ϕ being uniformly nonstationary (Lemma 3): As shown previously, we prove

$$\frac{\partial^l}{\partial s^l}(e^{i\lambda\phi}a_\beta) = r^l e^{i\lambda\phi}a_{\beta,l}$$

with $a_{\beta,l} \in S_{1,0}^{-1+(n/2m)-(l(2m-1)/2m)}$. Then we use the fact that ϕ is nonstationary on Ω_0 to have a first order differential operator L in the ω -variables, with coefficients in $S_{1,0}^0(S^{n-1} \times \mathbf{R}_+)$ satisfying ${}^tL\phi = 1$. We use L k-times to integrate by parts in the ω -variables and (R) shows for $\lambda > h_1$ and any $k \in \mathbf{N}$:

$$\left| \frac{\partial^l}{\partial s^l} \int_{\Omega_0} e^{i\lambda \phi} a_\beta \, d\omega \right| < D_{0,k} r^l \lambda^{-k} s^{-1 + (n/2m) - (l(2m-1)/2m)}.$$

To estimate integrals over Ω_i $(1 \leq i \leq N)$ we use the fact that, on Ω_i , the phase is stationary at a single point and nondegenerate at this point uniformly in s (Lemma 3). We apply the Stationary Phase Theorem with Parameters (Duistermaat [5]) and (R) to prove for $\lambda > h_2$:

$$\left|\frac{\partial^l}{\partial s^l}\int_{\Omega_r}e^{i\lambda\phi}a_\beta\,d\omega\right|< D_i r^{l-(n-1)/2}s^{-1+(n+1)/4m-l(2m-1)/2m}.$$

Taking $k \ge (n-1)/2$, $D = \max(D_i, D_{0,k})$ proves the estimate. Q.E.D.

C. Proof of Theorem 1. Let β be the previously defined function with a' = d. Let $\alpha(\xi) = 1 - \beta(P(\xi))$. We have

$$\overline{\mathcal{F}}(e^{itP(\xi)}) = \int_{\mathbf{R}^n} e^{i\langle x,\xi\rangle} e^{itP(\xi)} \alpha(\xi) \, d\xi + \int_0^\infty e^{its} \left(\int_{S^{n-1}} e^{i\lambda\phi} a_\beta \, d\omega \right) \, ds$$
$$= I_1(t,x) + I_2(t,x)$$

(a) $I_1(t,x)$ is the Fourier transform of a function in $\mathcal{D}(\mathbf{R}^n)$. It is rapidly decreasing in the x-variables and we have

$$\forall k \in \mathbf{N} \quad |I_1(t,x)| < K_k |t|^k r^{-k},$$

where K_k are absolute constants.

Taking k = 0 shows that $I_1(t, x) \in L^{\infty}_{loc}$ uniformly in t.

Taking k an integer, k > n/q, shows that $I_1(t, x) \in L^q(\mathbf{R}^n)$. Let c' > n/q, $c' \in \mathbf{N}$. Then

(J1)
$$||I_1(t,\cdot)||_{L^q(\mathbf{R}^n)} < K(1+|t|^{c'}).$$

(b) In order to estimate $I_2(t,x)$ locally, we integrate by parts in the s-variable l-times, and use Lemma 4(a) with l > n/2m - 1 to prove

(J2)
$$I_2(t,x) \in L^{\infty}_{loc} \text{ with bound less than } K'|t|^{-c} \text{ where } c \text{ is an integer},$$
$$c > n/2m - 1.$$

(c) In order to estimate $I_2(t,x)$ for large x, we first integrate by parts l'-times in the s-variable, as previously. Then apply Lemma 4(b) for l' > (n+1)/2(2m-1) to obtain

(J3)
$$|I_2(t,x)| < K'_{l'}|t|^{-l'}r^{l'-(n-1)/2}.$$

Assumptions (H3) and m > 2 prove that there exists $l' \in \mathbb{N}$ with

$$(n+1)/2(2m-1) < l' \le (n-1)/2.$$

Taking this value for l' shows that $I_2(t,\cdot) \in L^{\infty}(\mathbf{R}^n)$ with

$$||I_2(t,\cdot)||_{L^{\infty}} < K'_{l'}|t|^{-l'} + K'|t|^{-c}.$$

Moreover, (J3) shows that $I_2(t,x) \in L^q(\mathbf{R}^n)$ for

$$(n-1)/2 - n/q > l'' > (n+1)/2(2m-1).$$

Assumption (H3') implies that such an integer l'' exists for q > q(m, n), and we have

(J5)
$$||I_2(t,\cdot)||_{L^q} < K'|t|^{-c} + K''|t|^{-l''}.$$

(d) We finally notice that we can choose l' and l'' less or equal to c to rewrite (J1), (J2), (J4) and (J5):

$$\begin{split} & \| \overline{\mathcal{F}}(e^{itP(\xi)}) \|_{L^{\infty}} < C_{\infty} (1 + |t|^{-c}), \\ & \| \overline{\mathcal{F}}(e^{itP(\xi)}) \|_{L^{q}} < C_{q} (|t|^{c'} + |t|^{-c}). \quad \text{Q.E.D.} \end{split}$$

REMARK. This computation shows that $I_2(t,x)$ is rapidly decreasing as $|t| \to \infty$. But in the general case, $I_1(t,x)$ does not decay as $|t| \to \infty$. Under an additional assumption, this will be the case locally.

COROLLARY. Local decay. If (H1), (H2) and (H3) are fulfilled and if we have

for $\|\xi\| < a$, $P(\xi)$ is nondegenerate at its critical points, then, if B is a bounded set in \mathbb{R}^n , we have for large |t|

$$\forall x \in B \quad |\overline{\mathcal{F}}(e^{itP(\xi)})(x)| < C|t|^{-n/2}.$$

PROOF. Using Lemma 4(a), we prove the rapid decay of $I_2(t,x)$ for bounded x. To estimate $I_1(t,x)$, we consider it as an oscillatory integral on a compact set with phase $P(\xi)$ and the parameter $|t| \to \infty$. (H4) enables us to apply the Stationary Phase Theorem which gives an estimate by $|t|^{-n/2}$. Q.E.D.

3. $(L^p, L^{p'})$ and (L^p, L^q) estimates $(1 \le p \le 2)$. Let $(e^{itP(D)}U_0)(x)$ be the solution U(t, x) of the Cauchy problem (**). We have the following $(L^p, L^{p'})$ and (L^p, L^q) estimates for $e^{itP(D)}$.

THEOREM 2. Assume P satisfies (H1), (H2) and (H3). Then for any $t \neq 0$ and any $p, 1 \leq p \leq 2, e^{itP(D)}$ maps continuously $L^p(\mathbf{R}^n)$ into $L^{p'}(\mathbf{R}^n)$ and we have the estimate

$$||e^{itP(D)}||_{\mathcal{L}(L^p,L^{p'})} < C(1+|t|^{-c\theta}),$$

where $\theta=p^{-1}-p'^{-1},\ p^{-1}+p'^{-1}=1,\ c$ is an integer, c>n/2m-1, and C does not depend on t.

THEOREM 2'. Assume P satisfies (H1), (H2) and (H3'). If $1 and <math>q(m,n,p) < q \le p'$, then $e^{itP(D)}$ continuously maps $L^p(\mathbf{R}^n)$ into $L^q(\mathbf{R}^n)$ for $t \ne 0$, and we have the estimate

$$||e^{itP(D)}||_{\mathcal{L}(L^p,L^q)} < C'(|t|^{c'\theta} + |t|^{-c\theta}).$$

Here

$$\theta = p^{-1} - p'^{-1}$$

c is an integer with c > n/2m - 1,

c' is an integer with c' > n(p'-q)/q(p'-2), and

 $(q(m,n,p))^{-1} = p'^{-1} + \theta(q(m,n))^{-1}$, where q(m,n) is given in Theorem 1.

PROOF. Since $e^{itP(\xi)}$ is of modulus one, $e^{itP(D)}$ is continuous in $L^2(\mathbf{R}^n)$ with norm equal to one. Theorem 1 gives the continuity of $e^{itP(D)}$ from $L^1(\mathbf{R}^n)$ to $L^q(\mathbf{R}^n)$, $q(m,n) < q \le \infty$. Then the Riesz Thorin interpolation theorem (Stein [11], Lions and Peetre [9]) proves the estimate. Q.E.D.

REMARK 2. With p and q fulfilling the same assumptions, if $P(\xi)$ is homogeneous, the estimates can be improved to

$$||e^{itP(D)}||_{\mathcal{L}(L^p,L^q)} < C_{p,q}t^{-(n/2m)(1/p-1/q)}.$$

We now come to $(L^p, L^{p'})$ and (L^p, L^q) estimates of the resolvent operator of iP(D):

THEOREM 3. Assume P satisfies (H1), (H2) and (H3). Then for $\lambda \in \mathbf{C}$ with $\operatorname{Re} \lambda \neq 0$, and for p, 2c/c+1 , we have

$$\|(\lambda - iP(D))^{-1}\|_{\mathcal{L}(L^p, L^{p'})} < C|\operatorname{Re} \lambda|^{-1}(1 + |\operatorname{Re} \lambda|^{c\theta}),$$

where $\theta = p^{-1} - p'^{-1}$, c is an integer, c > n/2m - 1, and C does not depend on λ .

THEOREM 3'. Assume P satisfies (H1), (H2) and (H3'). Then for $\lambda \in \mathbb{C}$, Re $\lambda \neq 0$, for p, $2c/c+1 , and for q, <math>q(m,n,p) < q \leq p'$, we have

$$\|(\lambda - iP(D))^{-1}\|_{\mathcal{L}(L^p, L^q)} < C|\operatorname{Re} \lambda|^{-1}(|\operatorname{Re} \lambda|^{-c'\theta} + |\operatorname{Re} \lambda|^{+c\theta}),$$

where the parameters involved have the same values as in Theorem 2'.

REMARK 3. If 2m > n+1, then c=1 and these estimates are valid for any $p,\ 1 .$

PROOF. With the same notation as before, we consider for Re $\lambda > 0$

$$F(\lambda,x) = \int_0^\infty e^{-\lambda t} U(t,x) dt.$$

For $U_0 \in L^p(\mathbf{R}^n)$ with $2 \ge p > 2c/c + 1$, the integral is convergent in L^q for any $q, q(m, n, p) < q \le p'$, in view of Theorems 2 and 2'. This leads to

$$||F(\lambda,x)||_{L^q(\mathbf{R}^n)} \le C|\operatorname{Re} \lambda|^{-1}(|\operatorname{Re} \lambda|^{-c'\theta} + |\operatorname{Re} \lambda|^{c\theta})||U_0||_{L^p(\mathbf{R}^n)}.$$

Then we take $U_0 \in S(\mathbf{R}^n)$, we compute $iP(D)F(\lambda, x)$ by passing the operator under the integral sign, and then integrate by parts to prove

$$F(\lambda, x) = (\lambda - iP(D))^{-1}U_0.$$

A density argument ends the proof for Re $\lambda > 0$.

For Re $\lambda < 0$, the same proof is valid with

$$F(\lambda, x) = -\int_{-\infty}^{0} e^{\lambda t} U(t, x) dt.$$
 Q.E.D.

REMARK 4. For homogeneous P we can take 1 , and the bound can be improved to

$$\|(\lambda - iP(D))^{-1}\|_{\mathcal{L}(L^p, L^q)} < C|\operatorname{Re} \lambda|^{-1 + (n/2m)(1/p - 1/q)}.$$

4. (L^p, L^p) estimates and smooth distribution groups (1 .

A. $e^{itP(D)}$ as a distribution with values in $\mathcal{L}(L^p)$. In order to prove (L^p, L^p) estimates for $e^{itP(D)}$, we first recall that $e^{itP(D)}$ is not a continuous mapping from $L^p(\mathbf{R}^n)$ to $L^p(\mathbf{R}^n)$ unless p=2, or t=0, or P(D) is a first order differential operator (Hörmander [7] and Brenner [4]). We will prove that for any $\phi \in \mathcal{D}(\mathbf{R})$ (the Schwartz space), the following operator is continuous in $L^p(\mathbf{R}^n)$:

$$\mathcal{G}(\phi) = \int_{-\infty}^{+\infty} \phi(t) e^{itP(D)} dt.$$

(We will denote it by $\mathcal{G}_p(\phi)$ when it will operate in $L^p(\mathbf{R}^n)$.) So we consider $e^{itP(D)}$ as a distribution in the t-variable with values in $\mathcal{L}(L^p(\mathbf{R}^n))$, and estimate its order.

The only hypothesis we will assume for P(D) throughout §4 will be

(HP) P(D) is a real valued, elliptic polynomial of order 2m, $P(\xi) \neq 0$ for $\xi \neq 0$.

REMARK. This last assumption about the zeros of $P(\xi)$ is unnecessary: one can always add to any real elliptic polynomial a constant c such that $P(\xi) + c$ fulfills (HP). Adding this constant changes in an obvious way the subsequent estimates. We adopt it in order to simplify notations.

DEFINITION 1. For $l \in \mathbb{N}$, let p_l be the following norm on $\mathcal{D}(\mathbf{R})$:

$$\forall \phi \in \mathcal{D}(\mathbf{R}) \quad p_l(\phi) = \sum_{0 < k < l} \left\| t^k \frac{d^k \phi}{dt^k} \right|_{L^1(\mathbf{R})}.$$

Let T_k denote the completion of $\mathcal{D}(\mathbf{R})$ for p_k , and T_{∞} the completion of $\mathcal{D}(\mathbf{R})$ for the family $(p_l)_{l \in \mathbf{N}}$. We will denote by T_k^+ and p_k^+ the same objects with $\mathcal{D}(\mathbf{R})$ replaced by $\mathcal{D}(\mathbf{R}_+)$.

THEOREM 4. Let P(D) satisfy (HP). Then for any $p, 1 , and any <math>k \in \mathbb{N}, k > n/2, \mathcal{G}_P$ is a continuous linear mapping from T_k to $\mathcal{L}(L^p(\mathbb{R}^n))$.

PROOF. For any $U_0 \in S(\mathbf{R}^n)$, the Cauchy problem (**) has a unique solution $U(t,x)=(e^{itP(D)}U_0)(x)$ which belongs to $S(\mathbf{R}^n)$ for any fixed t. Let $\phi(t)\in \mathcal{D}(\mathbf{R})$. The following computation is obvious in $S(\mathbf{R}^n)$:

$$\begin{split} \mathcal{G}(\phi)U_0 &= \int_{-\infty}^{\infty} \phi(t)e^{itP(D)}U_0\,dt = \int_{-\infty}^{\infty} \phi(t)\overline{\mathcal{F}}(e^{itP(\xi)}\mathcal{F}U_0(\xi))\,dt \\ &= \overline{\mathcal{F}}\left(\int_{-\infty}^{\infty} \phi(t)e^{itP(\xi)}\,dt\cdot\mathcal{F}U_0(\xi)\right) = \overline{\mathcal{F}}(\hat{\phi}(P(\xi))\cdot\mathcal{F}U_0(\xi)), \end{split}$$

where $\hat{\phi}$ denotes the inverse Fourier transform of ϕ in the variable t. To prove Proposition 1, we have to prove that $\hat{\phi}(P(\xi)) \in M_p$, the space of Fourier multipliers in $L^p(\mathbf{R}^n)$, and the M_p norm of $\hat{\phi}(P(\xi))$ is bounded by the T_k norm of ϕ . A density argument will conclude the proof. We will use a sufficient condition for a function to belong to M_p given by Stein [11]: for every differential monomial ∂_{ξ}^{α} with $|\alpha| \leq k \ (k > n/2), \ |\partial_{\xi}^{\alpha} \hat{\phi}(P(\xi))|$ must be bounded by $p_{|\alpha|}(\phi) ||\xi||^{-|\alpha|}$. This is done inductively. For $|\alpha| = 0$, we have

$$\forall \phi \in \mathcal{D}(\mathbf{R}), \ \forall \xi \in \mathbf{R}^n, \quad |\hat{\phi}(P(\xi))| \le ||\hat{\phi}||_{L^{\infty}} \le ||\phi||_{L^1} = p_0(\phi).$$

Assume that for any $\beta \in \mathbf{N}^n$ with $|\beta| < |\alpha|$, we have the following estimate for the derivative of order β :

$$\forall \phi \in \mathcal{D}(\mathbf{R}), \ \forall \xi \in \mathbf{R}^n, \quad |\partial_{\xi}^{\beta} \hat{\phi}(P(\xi))| \leq C p_{|\beta|}(\phi) \|\xi\|^{-|\beta|}.$$

Then, with a little abuse of notation, and using the classical formulas of derivatives of Fourier transforms and Fourier transforms of derivatives (taken at the point $P(\xi)$), we compute the derivative of order α :

$$\begin{split} \partial_{\xi}^{\alpha} \widehat{\phi}(P(\xi)) &= \partial_{\xi}^{\alpha-1} [i(\partial_{\xi} P) \cdot \widehat{t\phi}(P(\xi))] \\ &= \partial_{\xi}^{\alpha-1} [(P^{-1} \cdot \partial_{\xi} P) \cdot (\widehat{\phi} + \widehat{t\phi'})(P(\xi))] \\ &= \sum_{\alpha} C_{\alpha-1}^{j} \partial_{\xi}^{j} (P^{-1} \cdot \partial_{\xi} P) \cdot \partial_{\xi}^{\alpha-1-j} (\widehat{\phi} + \widehat{t\phi'})(P(\xi)) \end{split}$$

by the Leibniz rule. Using the assumed estimates we have

$$\begin{split} |\partial_{\xi}^{\alpha} \hat{\phi}(P(\xi))| &\leq \sum C_{\alpha-1}^{j} |\partial_{\xi}^{j}(P^{-1} \cdot \partial_{\xi}P)| \cdot p_{|\alpha-1-j|}(\phi + t\phi') \cdot \|\xi\|^{-|\alpha-1-j|} \\ &\leq \|\xi\|^{-|\alpha|} \sum C_{\alpha-1}^{j} \cdot \sup_{\xi \in \mathbf{R}^{n}} (\|\xi\|^{|j|+1} \cdot |\partial_{\xi}^{j}(P^{-1} \cdot \partial_{\xi}P)|) \cdot p_{|\alpha-1-j|}(\phi + t\phi'). \end{split}$$

Boundedness of $\|\xi\|^{|j|+1}\partial_{\xi}^{j}(P^{-1}\cdot\partial_{\xi}P)$ follows from (HP). Using the inequality $p_{|\gamma-1|}(t\phi') < D_{\gamma}p_{|\gamma|}(\phi) < D_{\gamma}p_{|\alpha|}(\phi)$ for $|\alpha| \ge |\gamma|$ we have

$$|\partial_{\xi}^{\alpha}\hat{\phi}(P(\xi))| \le C' p_{|\alpha|}(\phi) \|\xi\|^{-|\alpha|}.$$
 Q.E.D.

REMARK 5. Following [2], if P is homogeneous, \mathcal{G}_p is a continuous mapping from T_k to $\mathcal{L}(L^p(\mathbf{R}^n))$ if k > n|1/p - 1/2|.

COROLLARY. Assume P(D) satisfies (HP). Let $iP_p(D)$ be the densely defined, closed operator in $L^p(\mathbf{R}^n)$ defined as iP(D) with domain $W^{2m,p}(\mathbf{R}^n)$. For any $\lambda \in \mathbb{C}$, $\operatorname{Re} \lambda \neq 0$, $(\lambda - iP_p(D))$ has a bounded inverse in $L^p(\mathbf{R}^n)$, 1 , and we have the estimate

$$\|(\lambda - iP_p(D))^{-1}\|_{\mathcal{L}(L^p(\mathbf{R}^n))} < C|\operatorname{Re} \lambda|^{-1} |\lambda(\operatorname{Re} \lambda)^{-1}|^{(n+3)|1/p-1/2|}.$$

PROOF. We first notice that for any $k \in \mathbb{N}$ and $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda > 0$, $Y(t)e^{-\lambda t}$ belongs to T_k with its p_k norm bounded by $C_k|\lambda|^k|\operatorname{Re} \lambda|^{-k-1}$. So, for any positive ε , $\mathcal{G}(Y(t)e^{-\lambda t})$ extends to a bounded operator in $L^{1+\varepsilon}(\mathbb{R}^n)$ with norm less than $C_k|\lambda|^k|\operatorname{Re} \lambda|^{-k-1}$, k > n/2.

On the other hand, $\mathcal{G}(Y(t)e^{-\lambda t})$ is obviously bounded in $L^2(\mathbf{R}^n)$ with norm less than $|\operatorname{Re} \lambda|^{-1}$. Interpolation between $L^{1+\varepsilon}$ and L^2 gives $\mathcal{G}(Y(t)e^{-\lambda t})$ bounded in $L^p(\mathbf{R}^n)$, $1+\varepsilon \leq p \leq 2$, with norm less than

$$|\operatorname{Re} \lambda|^{-1} |\lambda (\operatorname{Re} \lambda)^{-1}|^{(E(n/2)+1)(1+\varepsilon)(p^{-1}-p'^{-1})/(1-\varepsilon)}$$

which is always less than $|\operatorname{Re} \lambda|^{-1} |\lambda(\operatorname{Re} \lambda)^{-1}|^{(n+3)(p^{-1}-2^{-1})}$. An adjointness argument gives the same result for $1 + \varepsilon \leq p' \leq 2$. On $S(\mathbf{R}^n)$, we have

$$(\lambda - iP(D))\mathcal{G}(Y(t)e^{-\lambda t}) = \mathcal{G}(Y(t)e^{-\lambda t})(\lambda - iP(D)) = I.$$

This proves that $\mathcal{G}_p(Y(t)e^{-\lambda t})$ is the inverse operator of the operator $(\lambda - iP(D))$ in $L^p(\mathbf{R}^n)$ with domain

$$\{U_0 \in L^p(\mathbf{R}^n) \text{ with } P(D)U_0 \in L^p(\mathbf{R}^n)\}.$$

But this is exactly $W^{2m,p}(\mathbf{R}^n)$, following the fact that

$$\partial_{\xi}^{\alpha}U_{0} = \overline{\mathcal{F}}(\xi^{\alpha}\mathcal{F}U_{0}) = \overline{\mathcal{F}}(\xi^{\alpha}P(\xi)^{-1}\mathcal{F}(P(D)U_{0}))$$

and using hypothesis (HP) and the multipliers theorem of Stein [11] quoted above to prove that $\xi^{\alpha}P(\xi)^{-1}$ is a multiplier of $L^{p}(\mathbf{R}^{n})$ if $|\alpha| \leq 2m$. For Re $\lambda < 0$, the same proof is valid with $\mathcal{G}(-Y(-t)e^{\lambda t})$ in place of $\mathcal{G}(Y(t)e^{-\lambda t})$.

REMARK. For p close to 1 or to infinity, and small values of n, a better estimate could be proved directly using Theorem 4 in $L^p(\mathbf{R}^n)$ to get

$$\|(\lambda - iP(D))^{P-1}\|_{\mathcal{L}(L^p)} < C|\operatorname{Re} \lambda|^{-1}|\lambda(\operatorname{Re} \lambda)^{-1}|^k \text{ with } k > n/2.$$

In order to study the case iP(D) + V(x), we will need an inverse result. We now introduce the abstract framework which will allow us to prove it.

C. Smooth distribution semigroups on a Banach space. Smooth distribution groups are a special case of distribution semigroups introduced by Lions [8]. They turn out to be the right tool to analyse differential operators in $L^p(\mathbf{R}^n)$. A particular class of these distributions was studied by us in [2]. We will not give those proofs here which are slight modifications of proofs given in [2].

DEFINITION 2. Let X be a Banach space. A smooth distribution semigroup of order $k \in \mathbb{N}$ and exponential growth $\delta > 0$ is a linear mapping \mathcal{G}_+ from $\mathcal{D}(\mathbf{R}_+)$ to $\mathcal{L}(X)$ such that

- (0) $e^{-\delta t} \mathcal{G}_+$ extends continuously to T_k^+ : $\forall \phi \in \mathcal{D}(\mathbf{R}_+), \|\mathcal{G}_+(e^{-\delta t}\phi)\|_{\mathcal{L}(X)} < Cp_k(\phi)$.
 - (i) $\forall \phi \in T_k^+, \ \forall \psi \in T_k^+, \ \mathcal{G}_+(\phi * \psi) = \mathcal{G}_+(\phi)\mathcal{G}_+(\psi).$
- (ii) There exists an everywhere dense subspace D of X such that for every $x \in D$ the distribution $\mathcal{G}_+ \otimes x$ is a continuous function on $\overline{\mathbf{R}}_+$, with value x at the origin.

NOTATION. The class of smooth distribution semigroups of order k and exponential growth δ will be denoted by $\sigma_{+}(k,\delta)$.

REMARK 6. (a) (i) makes sense because T_k^+ is an algebra for the (additive) convolution.

(b) We notice that for any $\phi \in \mathcal{D}(\mathbf{R}_+)$, $(s^{-1}\phi(s^{-1}\cdot))_{s>0}$ is a bounded subset of T_k^+ . The Ascoli theorem then shows that $e^{-\delta t}\mathcal{G}_+(s^{-1}\phi(s^{-1}\cdot))$ converges strongly to the identity. This implies

$$N = \bigcap_{\phi \in T_{k,\delta}^+} \operatorname{Ker} \mathcal{G}_+(\phi) = \{0\},\,$$

$$R = \bigcup_{\phi \in T_{k,\delta}^+} \operatorname{Im} \mathcal{G}_+(\phi)$$
 is everywhere dense in X .

Let $\mathcal{G}_{+}(-\delta')$ be the operator defined on R by

$$\mathcal{G}_+(-\delta')\mathcal{G}_+(\phi)x = \mathcal{G}_+(-\phi')x \text{ for } x \in X, \ \phi \in T_k^+.$$

The properties quoted in Remark 6 show that this definition is consistent and that $\mathcal{G}_{+}(-\delta')$ is closable.

DEFINITION 3. The infinitesimal generator of $\mathcal{G}_+ \in \sigma_+(k, \delta)$ is the closure of $\mathcal{G}_+(-\delta')$.

Spectral properties of generators of smooth distribution semigroups are summarized in the following:

PROPOSITION 1. If A generates $\mathcal{G}_+ \in \sigma_+(k,\delta)$ on a Banach space X, then A is densely defined, closed, and for any $\lambda \in \mathbb{C}$, $\operatorname{Re} \lambda > \delta$, λ belongs to the resolvent set of A. For any $\mu \in \mathbb{C}$ with $\operatorname{Re} \mu > 0$, we have

$$\|(\lambda I - A)^{-\mu}\|_{\mathcal{L}(X)} < C(\mu)|\lambda - \delta|^k (\operatorname{Re} \lambda - \delta)^{-k - \operatorname{Re} \mu},$$

where $C(\mu) = C\Gamma(\operatorname{Re}\mu)|\Gamma(\mu)|^{-1}|\mu|^k$.

PROOF. We will sketch it for μ a positive integer. The proof for $\mu \in \mathbb{C}$ is a slight modification of that given in [2]. We first notice that for $\operatorname{Re} \lambda > \delta$, $Y(t)t^{\mu-1}e^{-(\lambda-\delta)t}$ belongs to T_k^+ and it is easy to see that

$$T(\mu)(\lambda I - A)^{-\mu} = \mathcal{G}_{+}(Y(t)t^{\mu-1}e^{-\lambda t}).$$

Then, $e^{-\delta t}\mathcal{G}_+$ being bounded on T_k^+ gives the estimate if we compute

$$p_k(Y(t)t^{\mu-1}e^{-(\lambda-\delta)t}) < C|\mu|^k|\lambda-\delta|^k(\operatorname{Re}\lambda-\delta)^{-k-\mu}.$$
 Q.E.D.

The inverse result is the following Hille-Yosida type estimate.

PROPOSITION 2. Let A be a closed, densely defined operator in a Banach space X. If for any $\lambda \in \mathbb{C}$, Re $\lambda > \delta$, λ belongs to the resolvent set of A and we have the estimate

$$\|(\lambda I/-A)^{-1}\|_{\mathcal{L}(X)} < C|\lambda-\delta|^k (\operatorname{Re}\lambda-\delta)^{-k-1},$$

then A generates a smooth distribution semigroup \mathcal{G}_+ of order k+2 and exponential growth δ .

PROOF. For any $\phi \in \mathcal{D}(\mathbf{R}_+)$ let $\tilde{\phi}$ denote its Laplace transform

$$\tilde{\phi}(\lambda) = \int_0^\infty e^{\lambda t} \phi(t) dt.$$

Let $\Gamma(c)$ be the line Re $\lambda=c$ positively oriented in the direction of increasing Im λ . We define \mathcal{G}_+ by

$$\mathcal{G}_{+}(\phi) = \frac{1}{2i\pi} \int_{\Gamma(\delta+\varepsilon)} \tilde{\phi}(\lambda) (\lambda - A)^{-1} d\lambda.$$

This integral is obviously convergent in $\mathcal{L}(X)$. Standard holomorphic calculus shows point (i) of Definition 2. The resolvent identity to order k+2 shows that $D(A^{k+2})$ can be taken for the dense subspace of point (ii) of Definition 2. It is straightforward to check that A is the infinitesimal generator of \mathcal{G}_+ .

It remains to show that $e^{-\delta t}\mathcal{G}_+$ extends continuously to T_k^+ . Using Fubini's Theorem, one has

$$\mathcal{G}_{+}(e^{-\delta t}\phi) = \frac{1}{2i\pi} \int_{\Gamma(\varepsilon)} \tilde{\phi}(\lambda)(\lambda + \delta - A)^{-1} d\lambda$$

$$= \int_{0}^{\infty} t^{k+2} \phi^{(k+2)}(t) \left(\frac{1}{2i\pi} \int_{\Gamma(\varepsilon)} (\lambda t)^{-k-2} e^{\lambda t} (\lambda + \delta - A)^{-1} d\lambda \right) dt$$

$$= \int_{0}^{\infty} t^{k+2} \phi^{(k+2)}(t) \left(\frac{1}{2i\pi} \int_{\Gamma(t\varepsilon)} \lambda^{-k-2} e^{\lambda} (t^{-1}\lambda + \delta - A)^{-1} t^{-1} d\lambda \right) dt,$$

and we only need to show that the norm of the path integral in $\mathcal{L}(X)$ is finite and does not depend on t. We change the integration path to $\Gamma(1)$ and use the estimate assumed on the resolvent operator to end the proof. Q.E.D.

We have the following regularity result for $\hat{\mathcal{G}}_+ \in \sigma_+(k,\delta)$ on $D(A^k)$. Its proof is similar to that given in [2].

PROPOSITION 3. Let $\mathcal{G}_+ \in \sigma_+(k,\delta)$ on a Banach space X. Let A be its infinitesimal generator. For any $x \in D(A^k)$, the distribution $\mathcal{G}_+ \otimes x$ is a function on $\overline{\mathbf{R}}_+$, denoted by $e^{tA}x$, and we have the estimate

$$\forall t > 0, \quad \|e^{tA}x\| < (\|x\| + \|A^kx\|)(1+t^k)e^{\delta t}.$$

DEFINITION 4. Let X be a Banach space and A a linear operator in X. A generates a smooth distribution group \mathcal{G} of order k and exponential growth δ (in short $\mathcal{G} \in \sigma(k, \delta)$) if A and -A generate elements of $\sigma_+(k, \delta)$.

D. Constant coefficients evolution equations in $L^p(\mathbf{R}^n)$ (1 .

THEOREM 5. Let P(D) be a differential operator satisfying (HP) and \mathcal{G}_p the distribution associated to $e^{itP(D)}$ in $L^p(\mathbf{R}^n)$. \mathcal{G}_p is a smooth distribution group of order k > n/2 and exponential growth 0 in $L^p(\mathbf{R}^n)$. Its infinitesimal generator is iP(D) with domain $W^{2m,p}(\mathbf{R}^n)$.

PROOF. This is a rewriting of Theorem 4. The only thing to be computed is the infinitesimal generator A_p of \mathcal{G}_p . Following the proof of the corollary of Theorem 4, it is enough to show that the domain of A_p is $\{U_0 \in L^p(\mathbf{R}^n)\}$ with $iP(D)U_0 \in L^p(\mathbf{R}^n)\}$ and that, on R, we have $A_p = iP(D)$.

For $\phi \in T_k^+$ and $U_0 \in L^p(\mathbf{R}^n)$ we have

$$A_{p}\mathcal{G}_{p}(\phi)U_{0} = \mathcal{G}_{p}(-\phi')U_{0} = \overline{\mathcal{F}}(\widehat{-\phi'}(P(\xi))\mathcal{F}U_{0})$$
$$= \overline{\mathcal{F}}(iP(\xi)\widehat{\phi}(P(\xi))\mathcal{F}U_{0}) = iP(D)\mathcal{G}_{p}(\phi)U_{0}.$$

If $U_0 \in L^p(\mathbf{R}^n)$ and $iP(D)U_0 \in L^p(\mathbf{R}^n)$, let $\phi \in \mathcal{D}(\mathbf{R}_+)$ with $\int \phi = 1$ and let $\phi_s = s^{-1}\phi(s^{-1}\cdot)$. Then $\mathcal{G}_p(\phi_s)U_0$ converges to U_0 in $L^p(\mathbf{R}^n)$ because $\widehat{\phi_s}(P(\xi))$ converges to one in M_p , applying Stein [11], and $\mathcal{G}_p(-\phi_s')U_0 = \mathcal{G}_p(\phi_s)(iP(D)U_0)$ converges in $L^p(\mathbf{R}^n)$ to $iP(D)U_0$. So $D(A_p) \supset W^{2m,p}(\mathbf{R}^n)$. For the inverse inclusion we just note that $\mathcal{G}_p(-\phi_s')U_0$ converges to $iP(D)U_0$ in $\mathcal{D}'(\mathbf{R}^n)$ if $U_0 \in D(A_p)$. So $iP(D)U_0 \in L^p(\mathbf{R}^n)$. Q.E.D.

REMARK 7. (a) Using the corollary of Theorem 4 and Proposition 2, we can improve the order of \mathcal{G}_p in $L^p(\mathbf{R}^n)$ to k > 2 + (n+3)|1/p - 1/2|.

- (b) Theorem 5 and Proposition 1 improve the estimate of the corollary of Theorem 4. They give an estimate for the powers of the resolvent of $iP_p(D)$.
 - (c) If P is homogeneous, the order of \mathcal{G}_p can be improved to k > n|1/p 1/2|.

PROPOSITION 4. For $U_0 \in W^{2mk, p}(\mathbf{R}^n)$, k > n/2, the solution of the Cauchy problem (**) is a continuous function in the t-variable with values in $L^p(\mathbf{R}^n)$. We have the estimate

$$||e^{itP(D)}U_0||_{L^p(\mathbf{R}^n)} < C(1+|t|^k)||U_0||_{W^{2mk,p}(\mathbf{R}^n)}.$$

PROOF. This is a translation of Proposition 3 using Theorem 5.

5. The Cauchy problem $\partial_t - iP(D) - V(x)$: (L^p, L^p) estimates. We consider the Cauchy problem

(*)
$$\partial U/\partial t = (iP(D) + V(x))U; \quad U(0,x) = U_0(x) \in L^p(\mathbf{R}^n).$$

We are now in position to prove that under the subsequent assumptions on P and V, the solution is a distribution in the t-variable with values in $L^p(\mathbb{R}^n)$. The order of this distribution is any integer k with $k > (n+3)|p^{-1}-2^{-1}|+4$. This will imply a precise estimate in $\mathcal{L}(L^p(\mathbb{R}^n))$ of the resolvent operator of iP(D) + V(x).

Here iP(D) + V(x) will mean this differential operator with domain $\{U_0 \in W^{2m, p}(\mathbf{R}^n) \text{ with } VU_0 \in L^p(\mathbf{R})\}.$

Let c be an integer with c > n/2m - 1.

Let q(m,n) = n(2m-1)/((m-1)(n-3)-2).

Let q'(m,n) be the conjugate index $q(m,n)^{-1} + (q'(m,n))^{-1} = 1$.

Let $\tilde{q} = q'(m, n)$.

THEOREM 6. Assume that (i) 2c/(c+1) .

(ii) P(D) satisfies (H1), (H2), (H3') and (HP).

(iii) $V = V_1 + V_2$ with $V_1 \in L^{r_1}(\mathbf{R}^n)$, $r_1^{-1} = |p^{-1} - p'^{-1}|$, $V_2 \in L^{r_2}(\mathbf{R}^n)$, $\tilde{q}^{-1}|p^{-1} - p'^{-1}| < r_2^{-1} \le |p^{-1} - p'^{-1}|$.

Then for any integer k, $k > (n+3)|p^{-1}-2^{-1}|+2$, and some $\delta > 0$, iP(D)+V(x) generates a smooth distribution group in $L^p(\mathbf{R}^n)$ of order k and exponential growth δ .

PROOF. (a) First we note that iP(D) + V and -(iP(D) + V) satisfy the same assumptions. So we just have to prove that iP(D) + V generates a smooth distribution semigroup of order k and exponential growth δ .

(b) For $p \leq 2$, we write the resolvent operator, whenever it exists, in the form

$$(\lambda - (iP(D) + V))^{-1} = (I - V(\lambda - iP(D))^{-1})^{-1}(\lambda - iP(D))^{-1}.$$

By the Neumann series, $(I - V(\lambda - iP(D))^{-1})^{-1}$ will exist and be bounded if $||V(\lambda - iP(D))^{-1}||_{\mathcal{L}(L^p)} < 1$. But

$$\begin{split} \|V(\lambda - iP(D))^{-1}\|_{\mathcal{L}(L^{p})} &\leq \|V_{1}\|_{\mathcal{L}(L^{p'}, L^{p})} \|(\lambda - iP(D))^{-1}\|_{\mathcal{L}(L^{p}, L^{p'})} \\ &+ \|V_{2}\|_{\mathcal{L}(L^{s_{2}}, L^{p})} \|(\lambda - iP(D))^{-1}\|_{\mathcal{L}(L^{p}, L^{s_{2}})} \\ &\leq C \|V_{1}\|_{L^{r_{1}}} |\operatorname{Re} \lambda|^{-1} (1 + |\operatorname{Re} \lambda|^{c\theta}) \\ &+ C \|V_{2}\|_{L^{r_{2}}} |\operatorname{Re} \lambda|^{-1} (|\operatorname{Re} \lambda|^{-c'\theta} + |\operatorname{Re} \lambda|^{c\theta}) \end{split}$$

by Theorems 3 and 3'. Following these theorems, we must have

$$\begin{array}{l} 2c/(c+1) n/2m - 1, \text{ and } \\ c' \text{ is an integer with } c' > n(p' - s_2)/s_2(p' - 2). \\ \text{Finally we have for } |\text{Re } \lambda| > 1 \end{array}$$

$$||V(\lambda - iP(D))^{-1}||_{\mathcal{L}(L^p)} < C(||V_1||_{L^{r_1}} + ||V_2||_{L^{r_2}})(1 + |\operatorname{Re} \lambda|^{c\theta})|\operatorname{Re} \lambda|^{-1}.$$

This must be strictly less than one for large $|\text{Re }\lambda|$: we must add the condition $c\theta < 1$, and this is true when p > 2c/(c+1). Thus there exists some positive δ such that for $|\text{Re }\lambda| > \delta$, $||V(\lambda - iP(D))^{-1}||_{\mathcal{L}(L^p)} < 1/2$. In this case, we have the following estimate for the resolvent by the corollary of Theorem 4:

$$\|(\lambda - (iP(D) + V))^{-1}\|_{\mathcal{L}(L^p(\mathbf{R}^n))} < 2C|\operatorname{Re} \lambda|^{-1}|\lambda(\operatorname{Re} \lambda)^{-1}|^{(n+3)|p^{-1}-2^{-1}|}.$$

This implies, by the abstract Proposition 2, that iP(D)+V generates a smooth distribution semigroup of order any integer k with $k > (n+3)(p^{-1}-2^{-1})+2$ and of exponential growth δ . All encountered assumptions are the assumptions given in the statement of the theorem for $p \leq 2$, but the assumption on r_2 . The condition $p^{-1} - (q(m,n,p))^{-1} < r_2^{-1}$ is equivalent to $(p^{-1}-p'^{-1})\tilde{q}^{-1} < r_2^{-1}$ by definition of q(m,n,p)

$$\begin{split} p^{-1} - (q(m,n,p))^{-1} &= p^{-1} - p'^{-1} - \theta(q(m,n))^{-1} \\ &= (p^{-1} - p'^{-1})(1 - (q(m,n))^{-1}) = (p^{-1} - p'^{-1})\tilde{q}^{-1}. \end{split}$$

(c) For $p \geq 2$, we use an adjointness argument to obtain

$$\|(\lambda - (iP(D) + V))^{-1}\|_{\mathcal{L}(L^p)} = \|(\overline{\lambda} - (i\overline{P}(D) + \overline{V}))^{-1}\|_{\mathcal{L}(L^{p'})}.$$

By the previous computation, this leads to the same estimate as in the case p < 2. But the conditions are to be written on p' in place of p: p' > 2c/(c+1) is equivalent to p < 2c/(c-1).

The conditions on r_1 and r_2 remain unchanged: they depend on $|p^{-1} - p'^{-1}|$. The condition on c' is changed, but we only need $c' \geq 0$, which remains the case. Q.E.D.

REMARK. If $V_2 = 0$, then assumption (H3') in Theorem 1 can be replaced by (H3).

REMARK. If P(D) is homogeneous, then under the assumptions of Theorem 6, (iP(D)+V) generates a smooth distribution group in $L^p(\mathbf{R}^n)$ of order any integer k with k > n|1/p-1/2|+2 and of exponential growth δ .

COROLLARY 1. Assume P, V and p satisfy the assumptions of Theorem 6. Then there exists $\delta > 0$ such that for any λ with $|\text{Re }\lambda| > \delta$ and any μ , $\text{Re }\mu > 1$, we have the estimate

$$\begin{aligned} &\|(\lambda-(iP(D)+V))^{-\mu}\|_{\mathcal{L}(L^p(\mathbf{R}^n))} < C(\mu)|\mathrm{Re}\,\lambda-\varepsilon\delta|^{-\mathrm{Re}\,\mu}(|\lambda-\varepsilon\delta|\,|\mathrm{Re}\,\lambda-\varepsilon\delta|^{-1})^k,\\ &\text{where }\varepsilon\text{ is the sign of }\mathrm{Re}\,\lambda,\ k\text{ is any integer with }k>2+(n+3)|p^{-1}-2^{-1}|\ and\\ &C(\mu)=C\Gamma(\mathrm{Re}\,\mu)|\Gamma(\mu)|^{-1}|\mu|^k. \end{aligned}$$

PROOF. It is a consequence of Theorem 6 and Proposition 1.

COROLLARY 2. Assume P, V and p satisfy the assumptions of Theorem 6. Let k be any integer with $k > (n+3)|p^{-1}-2^{-1}| + 2$. Assume $U_0 \in L^p(\mathbf{R}^n)$ with $(iP(D)+V)^kU_0 \in L^p(\mathbf{R}^n)$. Then the solution U(t,x) of the Cauchy problem (*) with Cauchy data U_0 is a continuous function of the t-variable with values in $L^p(\mathbf{R}^n)$ and for any $t \in \mathbf{R}$ we have the estimate

$$||U(t,\cdot)||_{L^p(\mathbf{R}^n)} \le C(||U_0||_{L^p} + ||(iP(D) + V)^k U_0||_{L^p})(1 + |t|^k)e^{\delta t}.$$

PROOF. It is a consequence of Theorem 6 and Proposition 3.

REFERENCES

- M. Balabane and H. A. Emami-Rad, Pré-publications mathématiques nº 22, Université Paris-Nord, 1981.
- 1. $\underline{\hspace{1cm}}$, Smooth distribution group and Schrödinger equation in $L^p(\mathbb{R}^n)$, J. Math. Anal. Appl. 70 (1979), 61–71.
- 2. ____, Pseudo differential parabolic systems in $L^p(\mathbb{R}^n)$, Contributions to Non-Linear P.D.E., Research Notes in Mathematics, no. 89, Pitman, New York, 1983, pp. 16-30.
- C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels, Théorème d'approximation. Application à l'équation de transport, Ann. Sci. Ecole Norm. Sup. 4 (1970), 185–233.
- 4. Ph. Brenner, The Cauchy problem for systems in L_p and $L_{p,\alpha}$, Ark. Math. 11 (1973), 75-101.
- 5. J. J. Duistermaat, Fourier integral operators, Courant Inst. Math. Sci., New York Univ., 1973.
- _____, Oscillatory integrals, Lagrange immersions and unfolding of singularities, Comm. Pure Appl. Math. 27 (1974), 207–281.
- L. Hormander, Estimates for translation invariant operators in L^p spaces, Acta Math. 104 (1960), 93-140.
- 8. J. L. Lions, Semi-groupes distributions, Portugal. Math. 19 (1960), 141-164.
- J. L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Inst. Hautes Études Sci. Publ. Math. 19 (1964), 5–68.
- 10. J. Peral, L^p-estimates for the wave equation, J. Funct. Anal. 36 (1980), 114-146.
- 11. E. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970.
- E. T. Whittaker and J. N. Watson, A course of modern analysis, Cambridge Univ. Press, London, 1969.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PARIS XIII, 93430 VILLETANEUSE, FRANCE

DEPARTMENT OF MECHANICS, UNIVERSITY OF PARIS VI, 75005 PARIS, FRANCE